Gradient coils
Gradient coils are used to produce deliberate variations in the main magnetic field (B0). There are three sets of gradient coils, one for each direction. The variation in the magnetic field permits localization of image slices as well as phase encoding and frequency encoding. The set of gradient coils for the z axis are Helmholtz pairs, and for the x and y axes, paired saddle coils.
Gradient coils need to provide linear gradations of the magnetic field. When turned on, one end or side the bore of the magnet has a lesser strength and the other a greater strength than the static main magnetic field. Drop off of the z gradient near the bore of the magnet can cause misplacement of objects in the image if signal is detected beyond the gradients. This should not happen with appropriate engineering.
See also
Related Radiopaedia articles
Physics and Imaging Technology: MRI
- MRI (introduction)
-
MRI physics
- B0
- chemical shift
- dependence of magnetization (proton density, field strength and temperature)
- echo time
- eddy currents
- electromagnetic induction
- Ernst angle
- flip angle
- Larmor frequency
- magnetic dipole magnetic field gradient
- magnetic susceptibility
- magnetism
- molecular tumbling rate effects on T1 and T2
- net magnetization vector (NMV)
- relaxation
- repetition time
- resonance and radiofrequency (RF)
- units of magnetism
- MRI hardware
- signal processing
-
MRI pulse sequences (basics | abbreviations | parameters)
- CSF flow studies
- diffusion weighted sequences (DWI)
- echo-planar pulse sequences
- fat-suppressed imaging sequences
- gradient echo sequences
- inversion recovery sequences
- metal artifact reduction sequence (MARS)
-
perfusion-weighted imaging
- techniques
- derived values
- saturation recovery sequences
- spin echo sequences
- spiral pulse sequences
- susceptibility-weighted imaging (SWI)
- T1 rho
- MR angiography (and venography)
-
MR spectroscopy (MRS)
- 2-hydroxyglutarate peak: resonates at 2.25 ppm
- alanine peak: resonates at 1.48 ppm
- choline peak: resonates at 3.2 ppm
- citrate peak: resonates at 2.6 ppm
- creatine peak: resonates at 3.0 ppm
- functional MRI (fMRI)
- gamma-aminobutyric acid (GABA) peak: resonates at 2.2-2.4 ppm
- glutamine-glutamate peak: resonates at 2.2-2.4 ppm
- Hunter's angle
- lactate peak: resonates at 1.3 ppm
- lipids peak: resonates at 1.3 ppm
- myoinositol peak: resonates at 3.5 ppm
- MR fingerprinting
- N-acetylaspartate (NAA) peak: resonates at 2.0 ppm
-
MRI artifacts
- MRI hardware and room shielding
- MRI software
- patient and physiologic motion
- tissue heterogeneity and foreign bodies
- Fourier transform and Nyquist sampling theorem
- MRI contrast agents
- MRI safety